¿Que es lo más difícil? Lo que parece más simple: "ver con los ojos lo que esta delante de ellos" ... GOETHE
sábado, 31 de agosto de 2013
Vínculos
Hola a todos, este post es para recomendar estos blog que me parece tienen info muy buena, chequeenlos ;)
Blog de medicina interna
El blog de medicina cubana
Pingback
Hola a todos!!!! esta publicación es para recomendarles un par blog muy buenos; son de un@s compañeros de la universidad. Por ejemplo: Medicina, Un mundo donde nos muestra una publicación motivacional titulada Porque estudiar medicina; EL MUNDO DE LA MEDICINA blog donde hay un artículo explicando porque algunos estudiantes de medicina sufren de EL PROBLEMA DE TODO ESTUDIANTE DE MEDICINA: ULCERA GASTRICA; y el blog Diario de una estudiante de medicina donde nos muestra en un interesante documental sobre la vida marina: "Documental sobre los gigantes del mar". Eso es todo por el momento nos vemos hasta la próxima publicación; y no olviden abrigarse que hace mucho frío ;) cuidence.
Estafilococo aureus en sangre
En este video se muestra un pequeño experimento simulamos la circulación sanguínea y una infección masiva de estafilococo aureus, este es el microorganismo más patógeno de las familias staphilococae y estreptococae. Podemos observar el comportamiento de este y como después de un lapso de 10 minutos comienza a lisar los eritrocitos, recordemos que el S aureus tiene lipasas, coagulasas, estafilokinasas y proteasas, considero importante e interesante este experimento ya que podemos observar como se comporta esta bacteria en tiempo real, y como comienza a aglutinar los eritrocitos, lisarlos y a reproducirse.
Creados microcerebros humanos a partir de células madre
Científicos de Viena logran ‘organoides’ de 4 milímetros que desarrollan las capas del córtex.
Son un modelo sin precedentes para investigar el desarrollo neuronal.
La respuesta es: aún no. Los científicos de Viena ni siquiera admiten estar intentando nada parecido. Su intención es construir un sistema modelo del cerebro humano que permita estudiar con una precisión sin precedentes su proceso de desarrollo en el feto, y también los fundamentos de las enfermedades neurológicas. De hecho, en el trabajo que presentan en el artículo principal de Nature no solo demuestran la generación de minicerebros a partir de células madre embrionarias humanas, sino también la de minicerebros enfermos, obtenidos de células madre iPS —o reprogramadas— de pacientes de microcefalia, una dolencia hereditaria que devuelve el cerebro humano al tamaño del de un australopiteco o un chimpancé. Y lo que ocurre en esos organoides ofrece una clave importante de las causas profundas de esa enfermedad.
Son un modelo sin precedentes para investigar el desarrollo neuronal.
La tecnología de las células madre nos tiene curados de espanto en los últimos años con la generación en el laboratorio de intestinos, pituitarias, retinas humanas y hasta hamburguesas de vacuno listas para su consumo. La línea roja era hasta ahora el cerebro, el órgano que nos permite pensar, sentir y reconocernos en un espejo como un yo autoconsciente, y la estructura más compleja de la que tenemos constancia en este universo de proporciones inimaginables. Madeline Lancaster, Juergen Knoblich y sus colegas del Instituto de Biotecnología Molecular de Viena se saltan ahora esa frontera al cultivar en el laboratorio unos minicerebros humanos, u organoides cerebrales del tamaño de un guisante que desarrollan espontáneamente las estructuras y capas neuronales del córtex, la sede de la mente humana. ¿Puede crearse una mente en el tubo de ensayo?
La respuesta es: aún no. Los científicos de Viena ni siquiera admiten estar intentando nada parecido. Su intención es construir un sistema modelo del cerebro humano que permita estudiar con una precisión sin precedentes su proceso de desarrollo en el feto, y también los fundamentos de las enfermedades neurológicas. De hecho, en el trabajo que presentan en el artículo principal de Nature no solo demuestran la generación de minicerebros a partir de células madre embrionarias humanas, sino también la de minicerebros enfermos, obtenidos de células madre iPS —o reprogramadas— de pacientes de microcefalia, una dolencia hereditaria que devuelve el cerebro humano al tamaño del de un australopiteco o un chimpancé. Y lo que ocurre en esos organoides ofrece una clave importante de las causas profundas de esa enfermedad.
Pero los científicos de Viena han ido ahora mucho más allá. Sus organoides cerebrales crecen ordenadamente hasta alcanzar los cuatro milímetros de diámetro —subir de ahí no es posible sin un sistema circulatorio que alimente de oxígeno al tejido— y pueden mantenerse en un reactor de forma aparentemente indefinida: 10 meses por ahora, pero quién sabe cuánto más. Los organoides presentan una cavidad interna similar a los ventrículos del cerebro que transportan el fluido cerebroespinal, y también estructuras similares a los plexos coroideos que generan ese fluido. Los tejidos que rodean ese ventrículo parecen diferenciarse, según todas las evidencias anatómicas y moleculares, en las distintas áreas anteriores, medias y posteriores típicas del cerebro normal en desarrollo.
Casi todo lo que se sabe sobre la biología humana se ha inferido investigando sistemas modelo mucho más accesibles a la experimentación, como levaduras, gusanos, moscas y ratones. Una de las mayores sorpresas que ha deparado la genómica contemporánea, por ejemplo, es que la lista de genes de los ratones y los humanos son virtualmente idénticas. Si en algo nos distinguimos de un ratón, sin embargo, es precisamente en el tamaño del córtex cerebral, y este es uno de los grandes problemas a los que se enfrenta el estudio de los fundamentos biológicos de las enfermedades neurológicas.
Un buen ejemplo es la microcefalia, una enfermedad genética —o un conjunto de ellas, puesto que se conocen mutaciones en cinco genes distintos que conducen a esta malformación— que devuelve el cerebro humano al tamaño del de un australopiteco: en cierto sentido, una regresión evolutiva a los bosques africanos de hace cuatro millones de años.
Otro de los chocantes logros de Lancaster y sus colegas es que, partiendo de células madre reprogramadas a partir de células de pacientes de microcefalia, han conseguido desarrollar organoides cerebrales que pueden suplir esa carencia y funcionar como modelos de esa malformación. Según sus datos, la microcefalia se debe a que las células precursoras de las neuronas se diferencian demasiado pronto como neuronas propiamente dichas, en lugar de seguir proliferando para multiplicar exponencialmente el tamaño del córtex. Es solo el principio de lo que promete convertirse en una línea de investigación radicalmente nueva.
¿Puede crearse una mente en el tubo de ensayo? La respuesta es que todavía no. Pero el énfasis parece estar hoy en la palabra todavía.
Suscribirse a:
Entradas (Atom)